Bayesian Spike and Slab regression or classification for tidyfit
Source: R/fit.spikeslab.R
dot-fit.spikeslab.Rd
Fits a Bayesian Spike and Slab regression or classification on a 'tidyFit' R6
class. The function can be used with regress
and classify
.
Details
Hyperparameters:
None. Cross validation not applicable.
Important method arguments (passed to m
)
In the case of regression, arguments are passed to BoomSpikeSlab::lm.spike
and BoomSpikeSlab::SpikeSlabPrior
. Check those functions for details.
expected.r2
prior.df
expected.model.size
niter
In the case of classification, arguments are passed to BoomSpikeSlab::logit.spike
and BoomSpikeSlab::SpikeSlabGlmPrior
. Check those functions for details.
niter
I advise against the use of BoomSpikeSlab::SpikeSlabGlmPrior
at the moment, since it appears to be buggy.
The function provides wrappers for BoomSpikeSlab::lm.spike
and BoomSpikeSlab::logit.spike
. See ?lm.spike
and ?logit.spike
for more details.
Implementation
Prior arguments are passed to BoomSpikeSlab::SpikeSlabPrior
and BoomSpikeSlab::SpikeSlabGlmPrior
(the function automatically identifies which arguments are for the prior, and which for BoomSpikeSlab::lm.spike
or BoomSpikeSlab::logit.spike
).
BoomSpikeSlab::logit.spike
is automatically selected when using classify
.
References
Scott SL (2022). BoomSpikeSlab: MCMC for Spike and Slab Regression. R package version 1.2.5, https://CRAN.R-project.org/package=BoomSpikeSlab.
See also
.fit.lasso
, .fit.blasso
and m
methods
Examples
# Load data
data <- tidyfit::Factor_Industry_Returns
# Stand-alone function
fit <- m("spikeslab", Return ~ ., data, niter = 100)
fit
#> # A tibble: 1 × 5
#> estimator_fct `size (MB)` grid_id model_object settings
#> <chr> <dbl> <chr> <list> <list>
#> 1 BoomSpikeSlab::lm.spike 1.92 #0010000 <tidyFit> <tibble>
# Within 'regress' function
fit <- regress(data, Return ~ ., m("spikeslab", niter = 100),
.mask = c("Date", "Industry"))
coef(fit)
#> # A tibble: 7 × 4
#> # Groups: model [1]
#> model term estimate model_info
#> <chr> <chr> <dbl> <list>
#> 1 spikeslab RF 0.967 <tibble [1 × 4]>
#> 2 spikeslab RMW 0.160 <tibble [1 × 4]>
#> 3 spikeslab Mkt-RF 0.977 <tibble [1 × 4]>
#> 4 spikeslab CMA 0.139 <tibble [1 × 4]>
#> 5 spikeslab HML 0.0302 <tibble [1 × 4]>
#> 6 spikeslab SMB 0 <tibble [1 × 4]>
#> 7 spikeslab (Intercept) 0 <tibble [1 × 4]>